第378章 登月前的准备(第3/4 页)
基地内部安装一个小型核聚变反应堆,作为备用能源,确保基地能够在任何情况下都能获得足够的能量。
“太阳能是最直接的能源来源,但我们不能完全依赖它。”李卫东说道,“核聚变反应堆将为我们提供长时间的能源保障,确保基地在任何环境下都能正常运行。”
研发进展:团队成功设计了一种高效太阳能收集系统,这种系统采用了可调节式太阳能板,能够根据太阳的位置自动调整角度,最大限度地提高能量收集效率。同时,科研团队还为基地设计了一种小型核聚变反应堆,这种反应堆不仅体积小、效率高,还具备极高的安全性,能够长时间为基地提供稳定的能源供应。
登月任务的核心目标之一便是氚-3的开采与提取。李卫东深知,月球表面虽然储藏了大量的氚-3,但要从月壤中提取这种珍稀资源并非易事。因此,他决定为月球基地配备一套自动化开采与提取系统,通过机器人和无人设备来完成开采任务。
李卫东的团队设计了一种月壤开采机器人,这种机器人能够在月球表面自动移动,并通过钻探设备将月壤进行深度开采。开采到的月壤将被送入基地内部的氚-3提取设备,通过高温分离技术,将月壤中的氚-3提取出来。
“我们不能依赖人类去完成开采任务,必须让机器人和自动化设备来完成这项工作。”李卫东在一次技术会议上说道,“只有这样,我们才能实现大规模的资源开采。”
研发进展:科研团队成功开发了一种月壤分离与提取设备,这种设备能够通过高温加热和气体分离技术,将月壤中的氚-3高效提取出来。提取到的氚-3将被储存在特制的容器中,通过专用的太空货运飞船运回地球,供未来的核聚变反应堆使用。
随着登月飞船和月球基地设备的研发逐步完成,李卫东和他的团队开始进入综合测试阶段。他们将在地球上模拟月球的环境,对所有设备进行全方位的测试,确保在实际任务中一切顺利。
李卫东的团队在沙漠地区建造了一个月球环境模拟基地,这个基地通过特殊的环境控制系统,模拟了月球表面的温度、重力、大气压等条件。所有的登月设备,包括飞船、自动化开采设备、生命支持系统等,都将在这里进行全面测试。
“我们必须确保所有设备在月球环境下都能正常运行,”李卫东在测试现场说道,“任何一个微小的故障都可能导致任务的失败,我们不能有任何疏忽。”
除了地面的环境测试,李卫东还计划通过无人飞船
本章未完,点击下一页继续。