2 章(第1/3 页)
选择斗牛士餐厅的过程。
假设在来到马拉加之前,每名游客都查阅了一些有关该市餐厅的信息,这些信息并不足以完全确定两家餐厅的优劣,但姑且假设每名游客均稍稍倾向于萨尔瓦多。
譬如,每名游客均认为萨尔瓦多餐厅较好的概率是51%,而斗牛士餐厅较好的概率仅有49%(例如,有畅销的旅行指南指出萨尔瓦多餐厅曾在米其林餐厅排名中领先,这样便会形成这种结果),这种情况便会出现。
来到马拉加后,游客得到了有关餐厅品质高下的另一个提示(如朋友发来的邮件、网站排名或酒店职员的推荐)。
可以顺理成章地假定,既然萨尔瓦多餐厅的客观品质更高,萨尔瓦多的正面提示会多于斗牛士。
但这些推荐存在随机成分,例如游客收到朋友发来的邮件,但这位朋友恰好以前去过斗牛士餐厅,而且喜欢那里的菜肴(毕竟,斗牛士餐厅并不差,只是不如萨尔瓦多而已)。
根据新得到的信息,每名游客此时都用贝叶斯公式修正了自己关于两家餐厅水平高下的概率估计。
须记住,我们假定所有游客不仅行事理性,还是概率论专家。
再假设所有提示都很确凿,因而经过这次修正之后,所有游客都胸有成竹地认为自己知道哪家餐厅确实更好。
鉴于所有人都具备理性思考能力,一名游客得到的提示中,若一家餐厅有一条正面提示,另一家有两条,则该名游客会修正自己的估算概率,认为有两条正面提示的餐厅胜出一筹的概率较高。
现在,进入主菜。
假设上午11点59,全部100名游客排队等候两家餐厅在正午开门迎接蜂拥而至的食客。
每名游客都收到了一条有关两家餐厅优劣的提示,而排在队伍最前面的两名游客收到了有关斗牛士餐厅的正面提示(再次提醒,有些游客收到了推荐斗牛士餐厅的信息,而其中有两个人恰好排在队伍最前面,这不足为奇)。
正午时分,两家餐厅的正门打开了。
在两家此时仍然空无一人的餐厅前,有服务生在殷勤等候午餐食客进门。
排队的每名游客相继依次且完全理性地决定自己去哪家餐厅就餐,排在队伍最前面的游客目前收到的是有关斗牛士餐厅的正面提示,因而以此为依据,自然而然地选择了斗牛士餐厅。
第二名游客也收到了有关斗牛士餐厅的正面提示,因此做出了同样的选择。
第三名