第一百三十五章 不止是韩公廉那么简单(第3/8 页)
默片刻,组织好语言,面带些许崇敬道:
“此人姓贾名宪,师从九章推步大师楚衍......”
老苏的这番话还没说完,徐云的眼皮便狠狠抽了一下。
妈耶。
居然是贾宪?
这个古代数学史上丰碑级的人物,这个时候居然还没死?
说道古代华夏的知名数学家。
很多人的脑海中第一个想到的,大概率都是祖冲之。
也就是全世界第一个将圆周率精算到小数第七位的男人,比欧洲要早一千多年。
但除了祖冲之外,华夏还有不少数学方面的牛人。
并且可以按照他们的贡献和方向,划分出很多类别。
比如以对现代数学影响力而言,秦九韶无疑当属首推。
因为本土数学中只有他的大衍求一术和中国剩余定理,仍然被现代数学所保留。
其余的各种华夏古代数学技术和数学工具,都是被西方数学家另起炉灶重新发明的。
若是以划时代的开创性而言。
那么无疑首推刘徽和朱世杰,因为他们分别对应着华夏两个数学高峰上的两次巨大的飞跃:
刘徽整理了整个秦汉时期的数学知识,奠定了华夏古代数学的整体框架,总结了线性代数的整体计算框架。
大体上类似希腊数学中的欧几里得。
朱世杰则整理了唐宋以降的数学,规范了天元术的数学框架,将华夏的代数从无符号计算带入了有符号计算。
而在三角领域中,贾宪无疑是个大牛中的大牛。
还记得1665副本中提到的杨辉三角吗?
杨辉三角其实就是由贾宪提出来的,所以有些人会叫它贾宪三角。
不过由于著作失传的缘故,他的优秀思想被另一位大数学家杨辉记录了下来。
因此后世才以杨辉三角为名定义了这个规律。
11年亚洲数学大会给出的理由是杨辉的记录有实物佐证,这逻辑其实也没啥毛病。
另外。
贾宪还创造了“增乘开平方法”和“增乘开立方法”的开方方法,
也就是求高次方程数值解的一类高效方法。
没错。
求高次方程数值。
要知道?
真年头的欧洲,还正在使用“罗马数码”呢。
没错,数码,连表数都十分困难,更不用说作这
本章未完,点击下一页继续。