第88章 一车破双士所想之把简单的事情复杂化。(第3/5 页)
力是平等的。
本小章还未完,请点击下一页继续阅读后面精彩内容!
当然黑将与士是不等的,这种假想有些费脑袋。这里我们不在纠结将军问题,而是思考另一问题,此时红方能否无损得士?你还别说,一个车还真拦不住双士黑将的防守。车看住双士的时候,黑将能够自由活动。一个车不能同时看住双士和黑将。看住双士,黑将活动;看住黑将,黑士活动。一车难以破掉双士将三个子力的活动。
再把双士换成单士一将,由于黑士将在九宫活动,竖向看只有三条道路,车追逐黑将时候,黑将能够两条道路来回选择,看似不能拿黑方怎么样,实则红车驱逐黑将一路后,在驱逐黑士(设原来在肋道)回中,此时黑将在中路那么黑将中士一线;如果黑将在肋道,那么在去车追逐则黑将回中,这样必然造成黑将黑士一线,这样就会形成车牵制将士然后利用等招造成黑方丢子。这样我们就论证了不论是两个士还是一个士一个将两个子力,由于活动范围有限,必然造成车牵制两个子力,造成无损取子条件。这样由于活动范围一定造成车能够抗衡两个子力相互防守,红方车必然胜利。而三个子力双士将对车的时候,一车已经难以抗衡,不能无损破防。这样看象棋中即使在有限范围内一个子力最多对抗两个子力,能够无损得子。面对三个子力时候,也不能破防。
这样一个子力最多对抗“两个子力能够无损得子,多余两个时候已经无能威力”的经验性结论。———弈修随想记。
当我们把这个结论运用到通常说的一车对双士的时候即一车一帅对双士一将,红帅牵制黑将. 这样又变成一车对双士,红方能够胜利。当然这是一种外推。至于能否成立还在两可两不可之间。
这里对不对先拿着结论来用,象棋中一个子力最多能够破防两个子力,两个子力能够破防三个子力,三个子力能够无损破防四个子力等等等。———哈哈,对不对拿着先用。不收钱。
如何证一车一帅能够破双士将呢?
双士占据两个竖直线,黑将可能占据双士那两条线,或者占据另一条线,这样红车将军必然能够驱逐黑将到有士的那边,或者对方调动士来到有将的这一条线。就是说三个子两条竖线,必然形成子力共线。
此时红帅能够牵制对方将士,这与红帅在哪条线无关。此时一种情形是在红方帅牵制下红方车能够取士。例如图1,2等情况。。另一种情形是黑将士红帅牵制时候没有事情,但调车用车时候,黑方解开栓链,此时怎么
本章未完,点击下一页继续。