第111章 论文完成(第4/12 页)
时间,乔喻除了吃饭几乎闭门不出,连书都不看了,全身心的投入到这项工作中去,然后真让他发现了共性的存在。模形式等级越高,曲线越复杂,所以k~曲线复杂性。
质数p控制曲线在p—进数域上的局部几何行为,不同的质数对应不同的几何约束,质数p也与曲线复杂性有关,所以p局部几何复杂性量子化同调中的参数q反映量子化几何对象对曲线全局复杂性的影响,这是对曲线几何复杂性的进一步量化,所以q~全局几何复杂性。换言之,不同的几何参数虽然来源不同,但它们反映的都是曲线在不同视角下的复杂性。
这是什麽?这就是参数统一的界定条件。
于是在周五晚上,乔喻设计出了一个统一的几何约束参数0,并提出了第二个假设:几何约束参数0是模形式等级丶p—进数域质数和量子化同调参数的某种加权组合,它们共同反映曲线的全局复杂性。
基于这个假设,很显然,乔喻能得到一个基本结构:0=f(g,k,p,q)。当然,到了这一步,显然还不够。
因为每个参数的权重并不一样,要让结构在数学上具备合理性,需要一个能够完美体现各个参数权重的组合方式。接下来就是计算跟验证工作,复杂,但不难。
不过一个晚上,乔喻便得出结论,k的增长与亏格g成对数级增长,所以:k~glog(g);局部几何的复杂性随着亏格增加呈指数级变化,所以p~e^g/2;量子化同调中,参数q与亏格g的关系增长乔喻则直接算出了一个近似值:q~g^3/2。
公式自然而然就出来了:0=fg,k,p,q=g-logk g^2.logp g·q
把三个参数的表达直接带入后,就是:0=g·logglogg g^2.loge^g/2 g·g^3/2 到了这一步就已经只剩亏格g一个重要参数。
接下来就是最简单的化简工作:0=g·logg loglogg g3/2 g^5/2
三天日以继夜在电脑前忙碌之后,乔喻在2025年2月21日,周五晚上11点37分,终于在电脑上敲出了关于曲线有理数点预估的最终公式:N(X)sC(0)=0^gθ就是他设计的几何约束参数,g是亏格。
这个公式...果然很美!
欣赏了一阵之后,乔喻立刻开始着手验证,毕竟公式光美没用,必须得有用才行。他要做的是根据自己的公式来求其是否准确。
乔
本章未完,点击下一页继续。