第158章 你急不急?(求订阅月票)(第3/7 页)
不少人列为了课题,并且很可能在最近一两年之内得到解决。
周氏解析法,等于创建了一个新的框架,虽然不完善,但是有很大的开发潜力。
不多时,周易很快便见到了自己未来的两个老师,一个是皮埃尔·德利涅,一个是约翰·米尔诺。
德利涅首先说道:
“丘已经跟我们说了很多缘故,所以我们两个商量了一下,不准备限制你的发展,可以选择加入我的课题组,也可以加入米尔诺现在的课题组,又或者你自己选择一个方向发展。
如果你对我们两个的课题都不感兴趣,自己选择方向,毕业要求也很简单,跟丘城同的要求一样,证明一项世界级的数学猜想。”
米尔诺也说道:
“其实我更希望你来学微分拓扑或者k—理论这个方向,提出猜想比证明猜想更重要。”
在数学中,k-理论k-theory是多个领域使用的一个工具。在代数拓扑中,它是一种异常上同调,
在物理学中,k-理论特别是扭曲k-理论isted k-theory出现在ii型弦理论type ii strg theory,其中猜测它们可分类d-膜d-branes、拉蒙-拉蒙场强raond-raond field以及广义复流形上某些旋量。
而这个理论最早的发现者,就是亚历山大·格罗滕迪克。
周易说道:
“多谢两位老师好意,我更想研究3n+1猜想又或者孪生素数猜想亦或者哥德巴赫猜想。”
二人听完倒是没多大的意外。
周氏解析法如果进行二次开拓,用来对付一些数论,那将是极为有利的工具。
不少普林斯顿解析数论方向的专家都在研究周氏解析法。
一些古典几何方向的人更是在研究周氏几何。
“那行吧,毕业要求也跟你说了,以你的天赋,加上解析法的开拓,只是毕业不难。
但是如果你在这边纸醉金迷,浪费自己的天赋,也许数年都难以毕业。更是对不起丘城同为你谋划这么多。”
米尔诺以告诫的口吻跟周易说道。
想要成为新一代数学大师,或许就得跟舒尔茨一样,形成自己的学派。
米尔诺必须得提醒一下他。
德利涅又说道:
“鉴于你还年轻,有些年少轻狂的脾气,所以让你在想三天,三天之后在给我们你的
本章未完,点击下一页继续。